

Geophysical constraints to large wind farm development

Enrico Antonini Carnegie Institution for Science 260 Panama St, Stanford, CA, USA

NAWEA/WindTech 2022 University of Delaware 20-22 September 2022

As wind farm size increases, mean generation per unit area decreases

Vestas V164-9.0MW

Nameplate capacity = 9 MW

Capacity factor = $\frac{P_{avg}}{P_N}$

Power density = $\frac{P_{avg}}{A}$ ~100-200 $\frac{W}{m^2}$

$\sim 0.2 - 0.6$

Sierra Nation

CALIFORNIA

National P

~0.25

Los Padres National Forest

Santa Barbara

Tehachapi Pass wind farm

Los Angeles

Anahein Long Beacho

Map data ©2021 Google, INEGI

Tehachapi Wind Resource Area

Power density = $\frac{P_{avg}}{A} \sim 2 \frac{W}{m^2}$

$\sim 100 \frac{W}{m^2}$

As wind farm size increases, wake extension increases

Abkar et al. (2015), Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

54.4°N

Platis et al. (2018), First in situ evidence of wakes in the far field behind offshore wind farms

8°E

8.5°E

$\sim 1 \mathrm{km}$

$\sim 10 \mathrm{km}$

54.4°N

8°E

$$-10$$

-12 NRCS $\frac{9}{9}$ (dB)
-16 (B)
-18

8.5°E

What controls and limits the energy extraction in large wind farms?

WRF simulations

Analytic framework

Installed capacity density 9.0 W/m²

- **—** Lat = 2.0 °
- **—** Lat = 22.2 °
- **—** Lat = 46.1 °
- **—** Lat = 67.8°
- **—** Lat = 83.8°

Transitional scales in wind farm performance and wake characteristics

Upstream flow

Developed flow over wind farm

Recovery of downstream flow

f=1.05·10⁻⁴ rad/s

- We provide a theoretical basis for upper limits of power density in large wind farms • Pressure gradients within the Ekman layer supply energy to large wind power plants • Interacting pressure-gradient, Coriolis and drag forces control the power density • We characterized transitional scales in wind farm performance and wake characteristics • Timescales related to the forces at play give a physical explanation to such a transition • Wind farms smaller than the characteristic length scale result in higher power densities and shorter wakes

- Increasingly larger wind farms result instead in power densities that asymptotically reach their minimum and wakes that reach their maximum extent

Key takeaways

HOME > SCIENCE > VOL. 366, NO. 6464 > GRAND CHALLENGES IN THE SCIENCE OF WIND ENERGY

REVIEW

Grand challenges in the science of wind energy

SCIENCE • 10 Oct 2019 • Vol 366, Issue 6464 • DOI: 10.1126/science.aau2027

First grand challenge: Improved understanding of atmospheric and wind power plant flow physics

Current Issue

- Authors Info & Affiliations

What's next?

• Can we define a power coefficient for large wind farms?

• Are many small, highly packed wind farms better than a single large, sparse wind farm?

• Can we validate these numerical and analytical solutions with experimental observations?

• Can we design better engineering wake models for inter-wind farm interaction?

Thanks for you attention!

Contact information:

Enrico Antonini eantonini@carnegiescience.edu

R^G R^G

